DAMAGE ASSESSMENT USING HYPERCHAOTIC EXCITATION AND STATE-SPACE GEOMETRY CHANGES

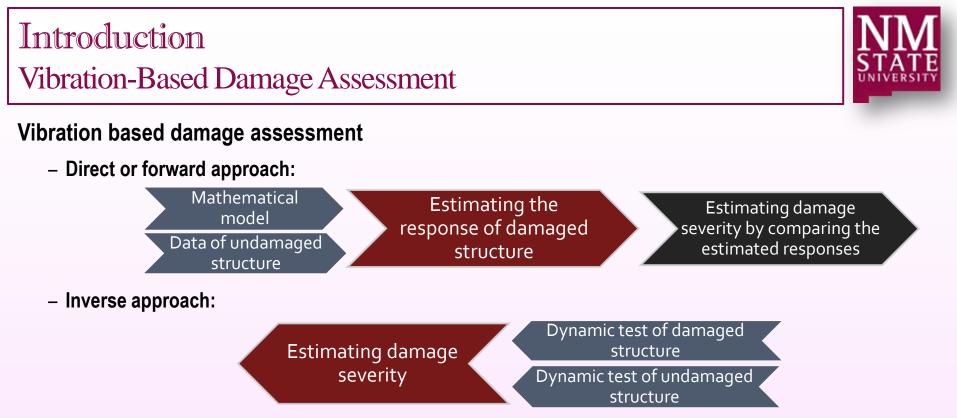
Shahab Torkamani

Eric A. Butcher

Michael D. Todd

Gyuhae Park

UC San Diego Jacobs School of Engineering



Damage-sensitive features

Any changes in some characteristic 'features' of the structural dynamic response serve as indicators of damage.

Features based on time series analysis

Transformation to a state space geometric domain, has long been of the most interest in nonlinear dynamics.

Introduction Chaotic Interrogation

Chaotic Interrogation Technique [Todd et al 2001]

- Uses deterministic excitation
- Uses steady state response
- Uses attractor geometry as a feature

Attractor-based features

- Correlation dimension [Logan et al 1996, Craig et al 2000 and Wang et al 2001]
- Local attractor variance [Todd et al 2001 & Nichols et al 2003]
- Auto-prediction error [Nichols et al, 2003]
- Cross-prediction error [Todd et al, 2004].
- Continuity [Nichols et al 2004].
- Chaotic amplification of attractor distortion (CAAD) [Moniz et al 2005].
- Transfer entropy [Todd et al 2005].
- Generalized Interdependence [Overbey et al 2008].

Introduction Hyperchaotic Interrogation

Invariants of a non-linear system

- Lyapunov exponent: reflects the sensitivity of the system to perturbation.
- Fractal dimension: measures how an attractor's geometry varies over several orders of length scale.

Chaotic excitation

- Broadband in the frequency domain.
- Deterministic and low dimensional (as low as three-dimensional).
- Extremely sensitive to small changes in system parameters (having a positive Lyapunov exponent).

Why a Hyperchaotic excitation ?

Having all the above properties, a hyperchaotic excitation has two distinguishing properties:

- More sensitive to small changes in system parameters(having more than one positive Lyapunov exponent).
- Still low dimensional (as low as four-dimensional)

Methodology The Structure as a Filter

Linear structure forced by a nonlinear oscillator

- $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}) \\ \dot{\mathbf{z}} = \mathbf{A}\mathbf{z}(t) + \mathbf{B}\mathbf{x}(t)$
- $\mathbf{F}(\mathbf{x})$: Nonlinear vector field.
- $\mathbf{x}(t)$: state-vector of a chaotic/hyperchaotic oscillator.
- A: Specifications of the structure (filter)
- B: Coupling matrix

Lyapunov spectrum of the response

$$\begin{aligned} \lambda_i^C &: i = 1, \dots, M \\ \lambda_j^L &: j = 1, \dots, N \end{aligned} \} \Rightarrow \lambda_k^S , \qquad \lambda_1^S > \lambda_2^S > \dots > \lambda_{N+M}^S \end{aligned}$$

- $\lambda^{C_{i}}$: LE's of the *M*-dimensional chaotic/hyperchaotic signal.
- λ_{j}^{L} : LE's of the *N*-dimensional linear filter.
- λ^{s}_{k} : LE's of the *N*+*M*-dimensional system.

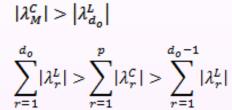
Fractal Dimension of the response (Kaplan-Yorke conjecture)

$$D_L = k + \frac{\sum_{r=1}^k \lambda_r}{-\lambda_{k+1}}$$

- k : maximum number of LE's which may be added together before the sum becomes negative
- D_L: Lyapunov dimension(which is close, if not equal, to the fractal dimension)

Methodology Tuning the Hyperchaotic Excitation/Attractor Reconstruction





- d_o : Degree of overlap
- p: Number of positive LE's of the hyperchaotic spectrum
- λ^{C}_{i} : LE's of the *M*-dimensional chaotic/hyperchaotic signal.
- λ_{j}^{L} : LE's of the *N*-dimensional linear filter.

Delay reconstruction

$$\mathbf{X}(n) = \begin{cases} x(n) \\ x(n+T) \\ \vdots \\ x(n+(m-1)T) \end{cases}$$

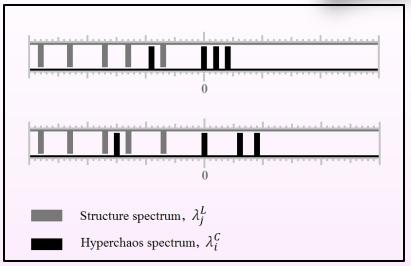
()

Choice of delay time, T

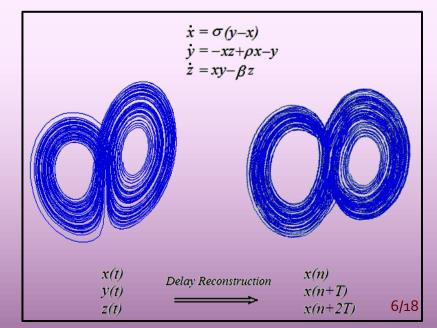
- Autocorrelation function
- Average mutual information function(AMI)
- Auto-covariance function

Choice of embedding dimension, m

- False nearest neighbor (FNN)
- Singular system analysis



A unit (upper) and a double (lower) degree of overlap



Methodology Average Local Attractor Variance Ratio (ALAVR) as a Feature

Algorithm to calculate (ALAVR)

- Reconstruct both the input x(t) and the output attractor z(t) using delay reconstruction. e.g. for m = 2:

 $\mathbf{X}(n) = (x(n), x(n+T)) \qquad \mathbf{Z}(n) = (z(n), z(n+T))$

- -Select a set of N_f randomly chosen fiducial trajectory, $X_f(n)$, on the driving attractor.
- -Select a number of N_b nearest neighbors with time indices, t_j , $j = 1, ..., N_b$ for each fiducial point.
- Exclude points within some number of time-steps, h, (Theiler window).

$$\mathbf{X}(t_j)_n$$
, $\mathbf{Z}(t_j)_n$, $(n-h) \ge t_j \ge (n+h)$

– Select the same neighborhood (same indices t_j) also from the output attractor :

- Calculate the total variance for a each of the neighborhoods:

var(Z(n) + Z(n+T)) = var(Z(n)) + var(Z(n+T)) + 2Cov(Z(n), Z(n+T))

- Calculate the ratio R(n)

$$R(n) = \frac{Var(\mathbf{X}(t_j)_n)}{Var(\mathbf{Z}(t_j)_n)}$$

- Calculate the (ALAVR) By averaging this ratio over N_f neighborhoods:

$$\Lambda = \frac{1}{N_f} \sum_{n=1}^{r} R(n)$$

- normalize the ALAVR computed at each damage level by using the zero-damage value:

$$\alpha = \frac{|\Lambda - \Lambda^*|}{\Lambda^*}$$

Hyperchaotic Interrogation of an 8-DoF System Modeling

Linear 8-DoF structure

 $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}) \\ \dot{\mathbf{z}} = \mathbf{A}\mathbf{z}(t) + \mathbf{B}\mathbf{x}(t)$

where $\mathbf{z} = \begin{bmatrix} \mathbf{q} \\ \dot{\mathbf{q}} \end{bmatrix}_{2n \times 1}$ and $\mathbf{A} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1}\mathbf{K} & -\mathbf{M}^{-1}\mathbf{C} \end{bmatrix}_{2n \times 2n}$ Parameters of an 8-DoF system: $m_i = 0.01$, $k_i = 2.0$, $c_i = 0.075$

Lyapunov spectrum of the structure: $\lambda_j^L = -0.127, -1.123, -2.980, -5.447, -8.192, -10.843, -13.042, -14.493$

Lorenz chaotic oscillator

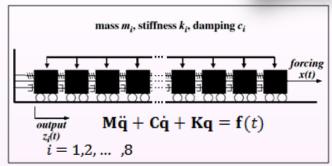
$$\dot{x}_1 = \sigma(x_2 - x_1)\delta \dot{x}_2 = (rx_1 - x_2 - x_1x_3)\delta \dot{x}_3 = (x_1x_2 - bx_3)\delta$$

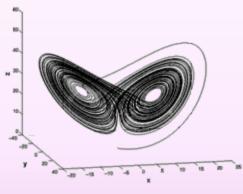
Lyapunov spectrum: $\lambda_{i=1,2,3}^{c} = 0.9056, 0.000, -14.5723$ Parameters: $\sigma = 10, r = 28, b = \frac{8}{3}, \delta$: bandwidth control parameter

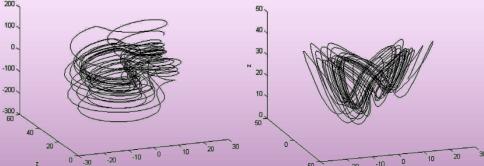
Lorenz hyperchaotic oscillator

$$\begin{split} \dot{x}_1 &= (\sigma (x_2 - x_1) + x_4) \delta \\ \dot{x}_2 &= (rx_1 - x_2 - x_1 x_3) \delta \\ \dot{x}_3 &= (x_1 x_2 - b x_3) \delta \\ \dot{x}_4 &= (d x_4 - x_1 x_3) \delta \end{split}$$

Lyapunov spectrum: $\lambda_{i=1,2,3,4}^{c} = 0.39854, 0.24805, 0.0000, -12.913$ Parameters: $\sigma = 10, r = 28, b = \frac{8}{3}, d = 1.3, \delta$: bandwidth control parameter







Hyperchaotic Interrogation of an 8-DoF System Tuning the Excitation

0.196< δ <1.933

 $\lambda_{d_0+1}^L$

 λ_M^C

Tuning criteria for hyperchaotic Lorenz excitation $d_o=1 \rightarrow 0.01 < \delta < 0.196$ $d_o=2 \rightarrow$ $d_o \delta$ D_L $\sum_{r=1}^{d_o} |\lambda_r^L|$ $\sum_{r=1}^{p} \lambda_r^C$ $\sum_{r=1}^{d_o-1} |\lambda_r^L|$ $|\lambda_{d_o}^L|$ 1 0.01 3.050 0.127 0.129 1.123 -- 1 0.05 3.251 0.127 0.645 1.123 --

1	0.01	3.050	0.127	0.129	1.123		0.006	0.127
1	0.05	3.251	0.127	0.645	1.123		0.032	0.127
1	0.085	3.432	0.127	1.097	1.123		0.054	0.127
1	0.095	3.483	0.127	1.226	1.123		0.061	0.127
1	0.170	3.865	0.127	2.195	1.123		0.109	0.127
1	0.196	3.997	0.127	2.530	1.123		0.126	0.127
2	0.21	4.007	1.123	2.71	2.980	0.127	0.135	1.25
2	0.23	4.019	1.123	2.969	2.980	0.127	0.148	1.25
2	0.25	4.093	1.123	3.22	2.980	0.127	0.161	1.25
2	0.4	4.117	1.123	5.165	2.980	0.127	0.258	1.25
2	1.933	4.999	1.123	24.96	2.980	0.127	1.249	1.25

Tuning criteria for chaotic Lorenz excitation

	$d_o=1 \rightarrow$		$0.01 < \delta < 0.14$			$d_o=2 \rightarrow$	$0.140 < \delta < 1.38$	
do	δ	DL	$\sum\nolimits_{r=1}^{d_o} \lambda_r^L $	λ ^c	$\sum_{r=1}^{d_o-1} \lambda_r^L $	$\left \lambda_{d_o}^L\right $	$ \lambda_M^C $	$\left \lambda_{d_{o}+1}^{L}\right $
1	0.01	2.070	0.127	0.145	1.123		0.009	0.127
1	0.07	2.496	0.127	1.020	1.123		0.063	0.127
1	0.14	2.998	0.127	2.040	1.123		0.126	0.127
2	0.25	3.088	1.123	3.643	2.980	0.127	0.226	1.25
2	1.38	3.999	1.123	20.109	2.980	0.127	1.249	1.25

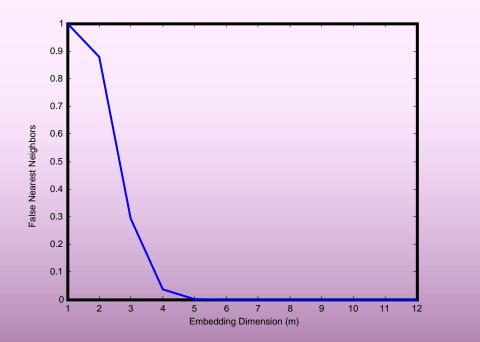
Hyperchaotic Interrogation of an 8-DoF System Integration and Reconstruction

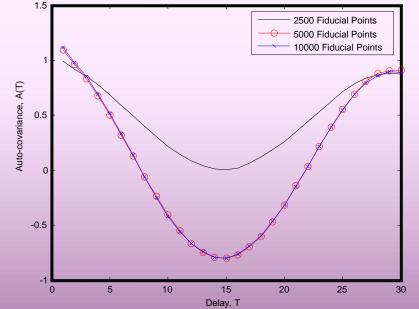
Numerical Integration

The equations of the 8-DoF system and that of the oscillator are integrated simultaneously using the 8th-order Runge-Kutta algorithm with a fixed time step of 0.0417 sec.

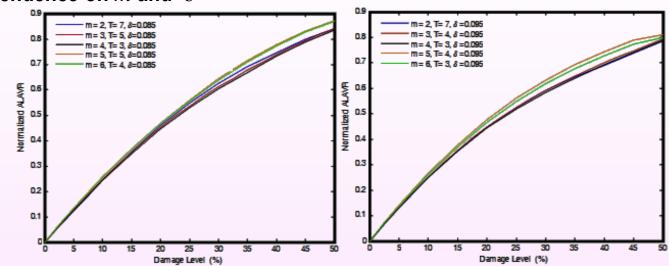
Delay Reconstruction

- The proper delay is selected based on auto-covariance function :
- $A(T) = \frac{1}{N_f} \sum_{n=1}^{\infty} Cov \left(Z_n(T) \right)$ - The 'False Nearest Neighbor (FNN)' is used to find the proper embedding dimension.





Hyperchaotic Interrogation of an 8-DoF System ALAVR for a Linear Damage Scenario



ALAVR dependence on m and δ

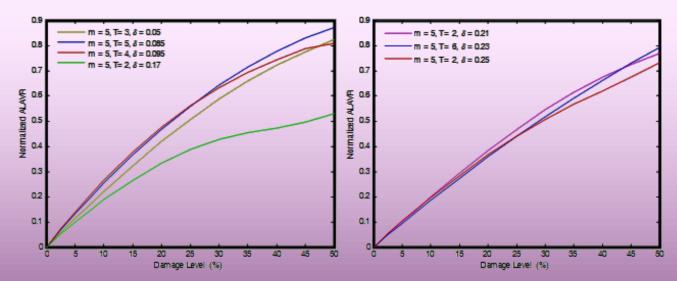
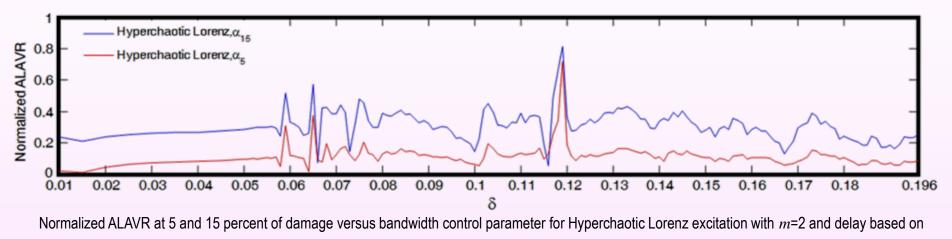


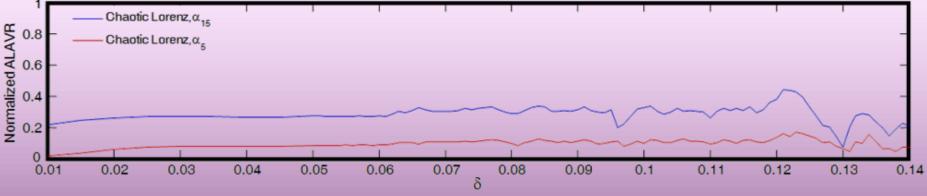
Figure 7. ALAVR obtained using different values of δ for a degree of overlap of one (left) and two (right).

Hyperchaotic Interrogation of an 8-DoF System Parametric Analysis

Varying δ , fixed *m*, *T* based on auto-covariance



auto-covariance function

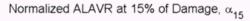


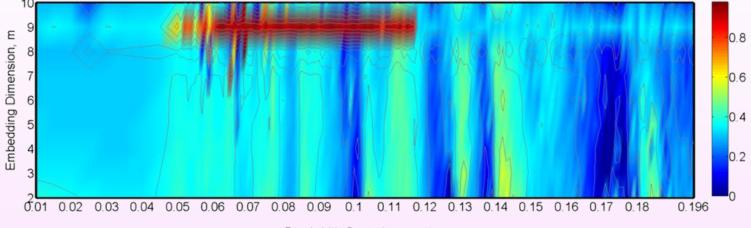
Normalized ALAVR at 5 and 15 percent of damage versus bandwidth control parameter for chaotic Lorenz excitation with *m*=2 and delay based on autocovariance function. *m*=2 and delay based on auto-12/18

Hyperchaotic Interrogation of an 8-DoF System Parametric Analysis (continued)

Varying δ , varying *m*, unit delay

Hyperchaotic Lorenz:

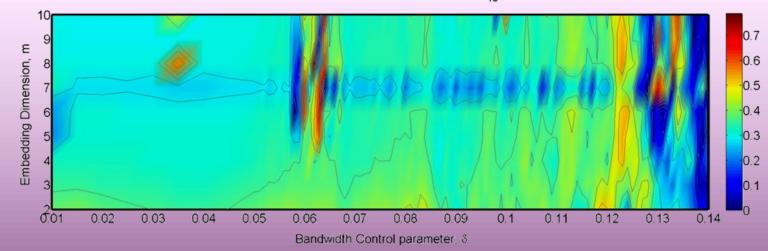




Bandwidth Control parameter, 8

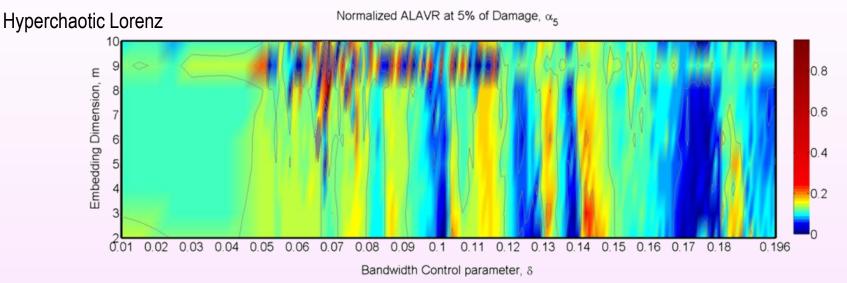
Chaotic Lorenz:

Normalized ALAVR at 15% of Damage, α_{15}



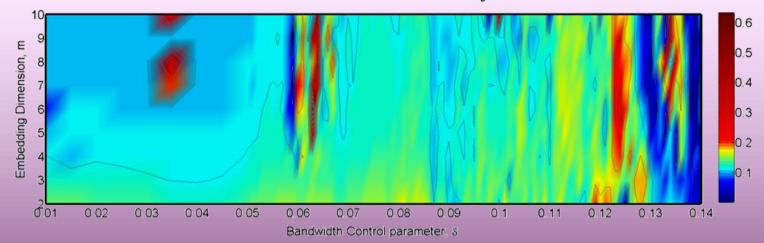
Hyperchaotic Interrogation of an 8-DoF System Parametric Analysis (continued)

Varying δ , varying *m*, unit delay



Chaotic Lorenz

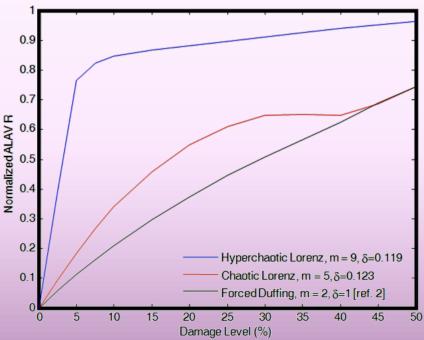
Normalized ALAVR at 5% of Damage, α_5



Hyperchaotic Interrogation of an 8-DoF System Sensitivity Comparison

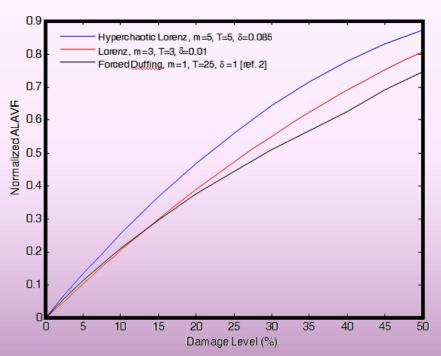
Most sensitive case:

- Based on parametric analysis δ :
- Based on parametric analysis m:
- **Based on Auto-Covariance** T:
- Unit d_{o} :



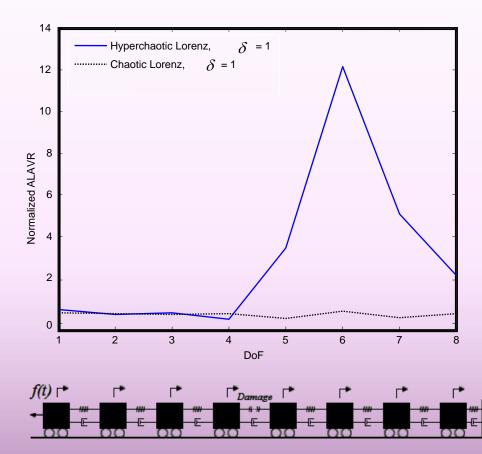
An arbitrary case:

- δ : Arbitrary
- Based on FNN m:
- T: **Based on Auto-Covariance**
- d_o : Unit



Comparing the sensitivity at some arbitrary values of δ

Experimental Verification Hyperchaotic Interrogation of an 8-DoF System



ALAVR Feature at each DoF of the system obtained from hyperchaotic and chaotic interrogation

Using hyperchaotic interrogation for damage detection of an 8DoF system

Conclusion

- A deterministic hyperchaotic steady state dynamic can be applied to the structure for the sake of damage parameters identification.
- Comparisons between the geometry of a baseline attractor and a test attractor at some unknown state of health can be used to determine the severity of the damage parameters.
- 'Average local attractor variance ratio' (ALAVR), is an appropriate feature to be used for the sake of geometry comparison of attractors obtained from a hyperchaotically excited structure.
- A hyperchaotic signal not only has all the advantages that make a chaotic signal suitable for being used as an excitation, but also it is shown to be even more sensitive to subtle changes in damage severity as a result of having more than one positive Lyapunov exponent.
- In hyperchaotic interrogation technique, in addition to the overlapping of the Lyapunov spectrum of the structure and the driving attractor, choice of a proper bandwidth for the excitation signal can affect the sensitivity of the technique.

Financial support from the Engineering Institute, Los Alamos National Laboratories, through the LANL-NMSU Memorandum of Understanding is gratefully appreciated.